
AD-.1,2 04 I

UNCISS IIZIF/C 12M O.

8- _

BI 1

'
I

I II - - - -- - --- - - ---

AD-A 192 484

AROYAL SIGNALS AND RADAR ESTABLISMENT

Report No. 87811

Title: User-extensible graphics using abstract structure

Authors P. W. Core

Date: August 1987

Summary

A means of creating an editor which allows its users to extend the
classes of objects manipulated by it Is described. This has been
achieved by creating an abstract structure representing object
classes. An example of such an editor has been implemented on Perq
Flex making use of true procedure values.

Accession For

DTIC TAB
Unannoun~cedo
justification-

By ca
Distribution/

Copyright

S
Controller HMSO Londn

1967

.b,4

CONTENTS

I Introduction

2 Notation and the use of Flex

3 The basic document on Flex

6 The Algol68 model of the graphical abstract structure

5 The creation of a PictureDefinition

6 The making of a picture from a PictureDefinition

7 The example

8 The operations of the abstract structure of a picture
8. 1 The displayer
8.2 The editor
8.3 Transferring pictures to other machines
8.3.1 The naming of the operations of a PictureDefinition
8.3.2 The passing of values between machines
8.3.3 The ed_out
8.3.1+ The ed_in

8. . Transferring pictures to and from disc
8.1+. I The valto.disc
8.4.2 The disc_to_val

8.5 Splitting pictures
8.6 Using pictures as input to compilers

9 Internal graphical blocks
9.1 The internal displayer
9.2 The internal editor
9.3 Transferring pictures to other machines
9 .t Transferring pictures to and from disc
9.5 Splitting pictures
9.6 Using pictures as input to compilers

1e A simple structure editor

11 Declaring Flex Picture Procedures

12 Conclusion

Acknowledgment

References

Appendix# System Modules for Use with Pictures

~It

§ I Introduction

This paper is concerned with the definition and implementation of
documents on computers. Documents are objects consisting of data
together with a visual image of that data, displayable on a screen.
Documents can be stored on backing store, edited or read by
programs.

The objects, from which documents are constructed, can be divided
into classes. For example, there is the class of lines of text, and
there is the class of paragraphs. Most implementations of documents
have the ability to include, as part of the document, objects from a
predetermined set of object classes. Whilst documents are designed
to include only a predetermined set of object classes, there will
always be objects that users would like to include in documents which
are not included in the implementation. To overcome this problem this
paper provides an implementation of documents which allows users to
define their own object classes and include them within the
document.

Once such a document has been designed it is possible to start with a
small set of object classes included in the implementation; other
classes can be added by means of user-defined objects. The entire
contents of a document can be thought of as an object, which may be
constructed from smaller objects. It is possible to design a document
which implements only user-defined classes, with the entire contents
of the document being expressed as a user-defined object. Some
object classes are so commonly used they can be included in the
implementation of the document. A document which does not contain
any user-defined objects is called a basic document.

Basic documents have been implemented on the Flex operating system
on the ICL Perq [Currie, Foster and Edwards 1983, 1985). The details
of this are given in sections 3.

There are operations that are applied to documents. For example,
documents can be displayed on screens, edited and coded for storage
on hard disc or floppy disc. If a document containing a user-defined
object is to be displayed on a screen, then there must be associated
with the user-defined object a means of displaying it on the screen.
Similarly, if a user-defined object is to be edited then there needs
to be a means of editing it. For every operation that can be applied to
a document there is a corresponding operation that can be applied to
user-defined objects. This defines the objects that can be included
in documents.

This paper defines an abstract structure for object classes which are
to be included in documents. Any object class which is an example of
this abstract structure can be included in the basic document. The
structure consists of a class of data, and a set of operations to
apply to the data class.

The Flex implementation of the basic document is written in Algol68.
Graphical objects in the document must be specified in terms of
Algol68. To accommodate this restriction the abstract structure of
the graphical block is modelled in Algol68. The data of the object
class are represented by values of an Algol68 type and the operations
on the object class are represented by Algol68 procedures applicable
to the Algol68 type of the data class.

The Algol68 model of the abstract structure is discussed in more
detail in section P+.

The Flex implementation of documents provides a means of defining an
object class and including objects of that class in documents. This is
described in sections 5 and 6.

Section 8 gives a detailed description of the operations that can be
applied to a class of objects included in a document, and this
description Is Illustrated with an example, given In section 7. The
more complex example of a simple structure editor is given in section
18.

An important aspect of the graphical objects discussed in this paper
is their ability to be defined recursively in terms of other graphical
objects. Section 9 gives details of how to construct graphical
objects from other graphical objects.

2

§ 2 Notation and the use of Flex

Much of the description of the abstract structure of objects included
in documents is expressed in Algol68. Where Algo168 expressions
occur in this paper they are written in italics. Where sections of
program are included, they are enclosed in a rectangular box.

Much of this paper Is concerned with the implementation of
user-defined graphics on Flex. It is intended to supply users of the
Flex system with enough information to create their own graphical
objects. A familiarity with Flex would aid in the understanding of
those parts of the paper which are more concerned with
implementation. Those parts of Flex which are used in this paper are
described below.

The implementation of user_defined graphics on Flex has involved the
writing of software. Some of this software is the actual
implementation and the remainder is a set of tools for users creating
pictures. The tools are described throughout this paper where they
are relevant and the appendix includes a list of the tools together
with a brief explanation of their use.

The tools are accessed via Flex Modules. Modules are objects that
keep values, in this case tools, that can be used in program. The
values kept by a module are accessed by including the module in a
program and referring to the kept values by name. [Stanley, 1985)
Pblock_modes ,Modul i is the notation used to reference the system
mocule of name 9block-modes.

The result of compilation on Flex is the Complledpalr. This is a value
which includes the code generated from the compilation, a language
dependent specification of the code and the source text of the
compilation. Compiledpairs are used to define user-defined graphical
objects.

Flex has a typed operating system and a command line interpreter,
curt I. F. Currie and J. M. Foster, 1982), which checks the types of
values before obeying the command line. Every value handled by the
operating system has a type called a Curt Mode.

3

I

§ 3 The basic document on Flex

Objects that are displayed on documents are called graphical blocks
and objects that are user-defined are called pictures. A class of
objects is either a class of graphical blocks or a picture class.

Every graphical block owns a rectangle on the document and its visual
image must lie inside the rectangle.

The graph occupies the area inside the rectangle defined by the
dashed lines. The dotted lines would not appear on the document, but
are drawn to show the limits of the graphical block.

.................................

Th1isis a-- graphfil l6~~cnitn 6~in f &hairacterg

There are three methods of constructing graphical blocks. Firstly,
there are primitive graphical object classes which form part of the
basic editor; secondly, all pictures are graphical blocks and finally
graphical blocks can be composed from other graphical blocks. The
ability to compose graphical blocks from graphical blocks introduces
recursion into the basic document.

The primitive classes of graphical block include the class of lines of
text and the class of black and white rectangles. Pictures are the
main subject of this paper. The composition of graphical blocks from
other graphical blocks is important to the subject of pictures for
two reasons. Firstly, a picture may form part of a composition of
graphical blocks to form a larger graphical block and secondly,
pictures may be recursively defined in terms of other graphical
blocks.

In basic documents there are two main methods of composition of
graphical blocks. Firstly graphical blocks can be composed
vertically. A vertical composition is formed by placing the graphical
blocks vertically above each other with a left justification.

is is the vertical compostionj

rap ical b*ock

rap Ica 'g

The rectangle occupied by the graphical block of the vertical
composition of the graphical blocks is the smallest rectangle
including the composition.

Secondly graphical blocks can be composed horizontally. It is not
always desirable for graphical blocks to be justified towards the
top. To determine where a graphical block lies in its horizontal
composition, there is a distance associated with each graphical block
called its y-point. The y-point is measured from the top of the
graphical block and when graphical blocks are composed horizontally,
their y-points must lie on the same horizontal line.

o...

y-point

horizontalSy-point

.. -.....

horizontal vector of graphical blocks

i s is;l u.

..............V...... '

Again the rectangle occupied by the horizontal composition of the
graphical blocks is the smallest rectangle including the composition.
Note that the top of the graph does not coincide with the top of the
graphical block, this is because it has a different v-point. This
example is more complex, with vertical graphical blocks forming part
of the. horizontal graphical block, illustrating the recursive nature
of graphical blocks.

A document is constructed from a graphical block and a size. The size
is the size of the document and it must not be smaller than the
graphical block from which it is constructed. Whei the document is
displayed, the graphical block is displayed in the top left of the
document.

5'

9 3. 1 GBLOCKs in programs and their composition

The basic document is written in Algol68 and this requires graphical
blocks to be representable by a value with an Algol68 mode. The
Algol68 mode for a graphical block is defined in the module
lblockjodes ,Moduleland is kept with the name GBLOCK.

Graphical blocks own rectangles on a document, making it necessary
to be able to describe vectors and rectangles in Algol68. The Algol68
modes for a vector and for a rectangle are defined in the module

Soord_and_re aModule'and are kept with the names VECI and RECT.

VECI is a STRUCT(INT x,y) and represents the two dimensional
vector.

Notice that the y direction is measured downwards.

RECT is a STRUCT(VECI 1I, size) and represents the rectangle

t I

If a graphical block is to be composed with other graphical blocks on
a document, then it will be necessary to know some properties of that
block. Its size will have to be known to determine where other
graphical blocks lie in relation to it, and also its y-point is required

6

when determining how to line up horizontal vectors of graphical
blocks.

The program value representing a graphical block includes both its
size and its y-point.

The Algol68 mode of GBLOCK is
5TRUCT(GITEM data, VECI size. IliT ypt)

The data field is a union of the modes representing data classes of
graphical blocks. It includes all the data classes required by
graphical blocks of the basic documents and the mode REF PICTURE.
REF PICTURE is the class of user-defined graphical blocks.
including their data together with the operations that can be
performed on that data.

i
7! "7

I _

§ 4, The Alqol68 model of the graphical abstract structure

Every picture class must be an example of the abstract structure of
objects in documents. Picture classes are defined in terms of Aigol6B
and there is a model for the abstract structure expressed in terms of
AlgolB8.

The abstract structure consists of a data class and a set of
operations operating on elements of the data class. The data class is
defined by an AIgoI6B mode and can be any Algol68 mode. For example.
the class of lines of text could be represented by the Algo168 mode
VECTORUCHAR. The operations of the abstract structure are defined
by Algol68 procedures. The modes of these procedures are entirely
determined by the mode of the data class. This AigoI68 model is made
possible because Flex supports true procedure values (Stanley 1986].

The Algo168 model for the abstract structure is expressed in terms
of a formal mode, PICVAL, and a set of named procedures whose
modes are expressed in terms of the formal mode PICVAL. For
example, the operation to store a graphical object on disc has mode

PROC(PICVAL)DISCCAPABILITY

Any example of this abstract structure must have a set of named
procedures whose modes can be created by a substitution for the
mode PICVAL in the abstract structure. In the case of lines of text,
the operation to store the text on disc is

PROC(VEC TOR[UCHAR)DISCCAPABILI TiY

The names and mode form of the operations follow, the name is on the
left and the mode form on the right. All of the modes except for
PICVAL are defined by the Flex implementation and are kept in common
modules, PiCVAL is the formal mode of the data class of the picture
class being defined. A more detailed explanation of the specification
of tne operations is given in section 8.

8

displa.ver PROC(DISPLA YFRAME, INT, PICVAL)VOID
(displays the data)

editor PROC(PIC TUREFRAMEINT, PIC VAL)EDI TRES
(edits the data)

ed_ out PROC (PROC(CHAR) VOID,
PROC(IN T) VOID,
PROC(GBL OCK) VOID,
PIC VAL

) VEC TOR[]CHA R
(encodes the data for output to

disc or ethernet I

ed_ in PROC(PROC CHAR,
PROC INT,
PROC BLOCK

)PIC VAL
(decodes the data after reading from

disc or ethernet)

val_ to_ disc PROC(PICVAL)INT
[stores the data on disc)

disc_ to_ val PROC(IN T)PIC VAL
(reads the data off disc)

v_ split PROC(PICVAL,
INT,
PROC(PIC VAL, VECI,INT)GBL OCK

)VSRES
(splits a picture horizontally into

two graphical blocks)

make_ gcomp_ input PROC(PIC VAL)INPUTRES
(provides input for program)

fold_ index PROC(PIC VAL, INDEX)PIC VAL
(marks a picture with an index)

to_ disc PROC(PIC VAL)GBDRES
(puts a picture to disc delivering any marks
it has)

Not all of these procedures need be defined to create a picture
class, but if a document contains pictures of a class, then it will not
be possible to operate on those pictures with operations missing
from the definition of the picture class.

9

§ S The creation of a PictureDefinition

The definition of the mode of the data class, together with the
procedures representing the operations on that data, defines a class
of pictures and is called a Picture Definition.

§ 5. 1 The making of a PictureDefinition

The Compiledpair of the Flex operating system is the result of
compilation. It contains the source text of the compilation, the code
produced by the compilation and in the case of an Algo168
compilation, the Algol68 specification of the values kept by the
program. The ability to hold the values resulting from compilation
and their specification makes the compiledpair a suitable basis for
defining a picture.

The Algo168 mode of the data class of the Picture Definition mLust be
kept by the Compiledpair and its name must be PICVAL. In addition to
the mode, any operations of the picture class must be kept in the
Compiledpair as Algo168 procedures, in the correct form. The
procedures kept must also have names so that, from examination of
the Picture Definition, it is possible to determine which procedure is
representing which operation. The name of each operation is the name
specified in section 4.

In the Flex operating system, there is a Curt mode PictureDefinition
and values of this mode have access to the defining Compiledpair of a
class of pictures. To create a PictureDefinition the Fle< procedure
new-picturedefn is applied to the Compiledpair. The application of
this procedure performs checks on the Compiledpair to ensure that
the definition is an example of the abstarct structure. There are two
checks performed; firstly the Compiledpair must keep a mode named
PICVAL, which is then taken to be the mode of the data class of the
picture definition; secondly, if any of the operations of the picture
class are kept, their modes must be correct. If these two conditions
are not met then the creation of a PictureDefinition will not be
allowed.

§ 5.2 The definition of non-standard operations

In a Picture Definition, it is possible to define procedures that are
not part of the abstract structure. These procedures are called
non-standard. In order that non-standard procedures can be
recognised, they must not have the name of any of the operations
defining the structure.

10

Defining non-standard operations on pictures has to be done with
care. Unlike procedures in the abstract structure, the modes of
non-standard procedures are not checked.

The only reason for including non-standard operations is to enable the
creator of the picture to access them from his own program which
may be manipulating graphical blocks. To obtain these procedures
from a picture there is a procedure fincL proc which operates on the
PICTURE field of the mode GBLOCK.

This procedure is kept in ,picture..proc :Module'. fincG proc has made

PROC(PIC TURF pc, VECTOR[ICHAR nanie)INIT

This procedure cannot determine the mode of the procedure it finds
and delivers a capability for the procedure described as an INT. If
there is no procedure called name in the picture definition of pc,
then 0 is delivered, otherwise, the mode of the result of fiWx-proc
will have to be-.changed using the binary operation 1881, defined.
thus.

OP(IA'T)PROCMODE CHANGEMODE - Biop lee);

It is important that PROCMOE is correct, otherwise the application
of the procedure could result in an error.

Using the procedure findrval, also kept in Eo Module, it
is possible to obtain the data value of a picture rrom a-graphical
block. The mode of findval is

PROC(PIC TURE)IN T

This procedure cannot determine the mode of the data of the picture
and delivers a packed version of the data described as an INT. The
data will have to be unpacked and given its correct mode (PICVAL)
using the binary operation 11t, defined thus

OP(INT)PICVAL UNPACK - BOP 1154;

This is a direct application of the Flex instruction 51f..
(I. F. Currie, J. M. Foster, P. W. Edwards, 1985)

The mode PlC VAL depends on the class of the picture from which it
was obtained. It is important that the mode PICVAL is correct,
otherwise errors will result.

b 5.3 The changing of a PictureDefinition

Once a picture has been created, it may be that the operations

an dlier apake vrsonofth dtadecrbe a a IT.Th

defining that picture need to be changed. There are two possible
changes that can be made to a PictureDefinition; firstly existing
procedures can be modified to incorporate changes in the
specification or to correct mistakes in the definition; secondl. new
operations can be added to the definition. The second type of change
enables pictures to be created without knowing all of the operations
that may have to be performed on them.

To change a PictureDefinition a new Compiledpair has to be created
which is the new definition of the class of pictures. Pictures which
have already been created cannot change their data, onl\ the
operations that can operate on the data: for this reason the Algol68
mode PICVAL kept in the new definition must be identical to the mode
in the old definition. Any of the procedures in the abstract structure
kept by the new definition must be of the correct form, and if an\
non-standard procedure is kept in the old definition, a procedure
with the same name and mode must be kept in the new definition. An
arbitrary number of non-standard procedures can also be included in
the new definit-ion. When an alteration to the PictureDefinition is
made, all of these properties are checked.

To make the change to the PictureDefinition the Flex procedure
amend-picture-defn is applied to the PictureDefinition to deliver a
procedure which operates on a Compiledpair, and will amend the
PictureDefinition to the definition of the Compiledpair. This is a
parallel to the Flex procedure amend used for changing the
Compiledpair associated with a Module.

For example

[Compiledpair jPictureDefinitiomendpicture-defn I'I

would give the PictureDefinition the definition of the Compiledpair.

12

9 6 The making of a picture from a PictureDefinition

There is a procedure on Flex (see section on Declaring Flex Picture
Procedures), called make-picturemaker, which when applied to a
PictureDefinition delivers a Compi ledpai r with an Algo168
specification. This Compiledpair keeps a procedure for making
pictures (of Algol68 mode GBLOCK) from the class of pictures
defined by the PictureDefinition. The name of this procedure is
make_name, where name is the name of the Compiledpair defining the
PictureDefinition.

The mode of this procedure is

PROC(PIC VAL, VECI,IN T)GBL OCK

This procedure is created from the Picture Definition and has the
class of pictures defined by the PictureDef inition bound to it. To
specify an individual picture from that class requires a data value
from the data class of that picture. This is supplied as a parameter
to the procedure (PiCVAL). In addition to the data of the picture,
information about the size and y-point of the picture need to be
supplied.

An example of the method that may be used to create a picture on a
document is

1. Make a Compiledpair keeping the mode of the data and the
procedures defining the operations of the picture. Apply
new_picturedefn to deliver a PictureDefinition

Fompiledpair new.picture_d efni delivering iceDeinition

2. Apply make-picture-maker to the PictureDefinition to deliver a
Compiledpair keeping make-name, from this make a new Module.

ictureDef ioimake-picturemaker ' new I delivering
ake_mme :Module

3. Write a program keeping a procedure to take data of a picture
class create the corresponding picture and display the picture on
the screen using roll.

13

j1

rol4Mpcture m:
oiakejiame :Module,

MODE PICVAL - (mode of picture data structure)~

PROC rolIL~picture - (PICVAL picture~yalue)VOID;

groll(make.,nome(picture-.value. (size of picture). (ypt of picture))

KEEP roIllpicture

FINISH

§ 7 The example

The example used to illustrate the creation of a picture is the class
of pictures representing polynomial fits through a set of puints. The
polynomial through a set of points shall be the lowest order
polynomial giving an exact fit.

The data class of the pictures is the set of points through which the
polynomial must pass. The Algol68 mode used to represent this data
set is REF VECTOR[]VECi, that is a set of displacement vectors.
These displacements are measured from the top left of the picture
and give the position of the points.

The class of data of the picture is only a subset of the Algol6S values
with mode REF VECTOR[VECI. It is not possible to fit a polynomial
through two points vertically above each other. A further restriction
on the class of data is that the REF VECTOR[]VECI is ordered
according to the displacement in the x direction of the VECI. The
latter restriction is for the convenience of writing the defining
operations of the picture.

The visual representation of a picture of this class is the set of
points, marked by crosses, together with the line representing the

polynomial fit.

The editor will have the ability to add points, remove points and move
points. As the data of the picture changes, the visual representation
must change to maintain consistency.

15

' 15 "

9 8 The operations of the abstract structure of a picture

This section gives a more detailed specification of the operations in
the abstract structure, illustrated by the polynomial fit example.

§ 8. 1 The displayer

Every graphical block of a document owns a rectangle on that
document, and this rectangle contains the visual image of the data of
that block. The displayer is the name of the operation for displaying
the visual image of the data of a picture in its rectangle.

This operation is used by the Flex editor when displaying documents
on the screen and can also be used for producing hard copies of
documents on printers.

The displayer operates by assigning the visual image to a two
dimensional boolean array (a raster). This boolean array is supplied
via the operands of the operation and in the case of the editor it will
be part of the screen. The boolean array represents pixels on the
document; if an element of the array is set to TRUE, then the
corresponding pixel is black, if it is set to FALSE, then the
corresponding pixel will be white.

The top left pixel of the rectangle of the picture is addressed by
[0,0]. The x direction is measured from left to right and the y
direction is measured from top to bottom.

The element of the boolean array corresponding to (xy) is addressed
by [y.x].

It is not always the case that the entire picture has to be displayed.
For example, if the picture is too large to fit on the screen, or only
part of the picture lies in a window on the screen, there is no need
to display the picture outside that window, especially as this
involves holding a larger boolean array than required.

16

window

picture... pi t r

If a document is being scrolled behind a window, then onl that part
of the picture which appears in the window as a result of the scroll
needs to be displayed.

To stop the unnecessary displaying of parts of a picture, in addition
to operating on the data of a picture, the displayer requires an
additional operand with Algol6B mode DISPLAYFRAME (kept in

1pic.-operator tModue). This value holds information about where to
display the pictur-and which part of the picture to display. To
obtain the boolean array to which the visual image of a picture is
assigned there is an operator AREA, (also kept in

Licoperator :Module-) operating on a DISPLAYFRAME. delivering the
oolean array. if only part of the picture is to be displa\ed, the

boolean array is trimmed accordingly.

Pictures may have to be displayed at different magnifications, for
example, the Perq screen has 186 pixels per inch. but a laser printer
may have more pixels to the inch. If a document is to have the same
size of visual image on both the Perq screen and the laser printer
then the displaying of the picture on the laser printer must be
magnified. This requirement results in a further operand to the
displayer; this operand Is an integer parameter and is the
magnification of the visual image. A magnification of I corresponds
to 198 pixels per Inch, corresponding to the Perq screen and a
magnification of n corresponds to 100n pixels per Inch. The size of a
picture and its y-point are measured in pixels assuming a
magnification of 1. If the magnification of the visual image is n, then
an untrimmed boolean array for displaying the lmac will have size
n x s, where s Is the size of the picture.

The magnification of an image is part of the definition of the picture
so that the user can take advantage of the increased resolution
provided by the greater magnifications.

17

The mode of the displayer is
PROC(DISPLA YFRAME.INT, PIC VAL) VOID.

DISPLA YFRAME is the display frame
INT is the magnification
PlCVAL is the underlying data structure

9 8. 1. 1 Writing to boolean arrays and the use of display procedures

The display frame defines a boolean array to which part of the visual
image of the data of a picture is assigned. If there is an attempt to
assign outside of the array then a failure will occur. It cannot be
assumed that the array is large enough to display the entire picture,
making it necessary to determine how large the array is and what part
of the picture is to be displayed.

It is the responsibility of the displayer to ensure that no assignment
is atempted outside the boolean array of the display frame. All of
the display procedures defined in the Flex implementation and
discussed in this document (see following section) are designed not
to fail. They all determine the size of the boolean array and do not
attempt to display outside of it.

If none of the picture to be displayed by a displayer lies in the
boolean array specified by the display frame, then the call of the
display procedure achieves nothing. The procedure has to determine
that none of the picture is to be displayed and the checks that this
involve are costly in time. If a display procedure intends to call
internally another display procedure and it is easy to determine that
the call of this procedure will not display any of a picture, then the
speed of the displayer will be increased by not calling the internal
procedure.

§ 9.1.2 DISPLAYFRAMEs and displaying procedures

In the defining of a displayer, it is often necessary to determine that
part of a picture which is required to be displayed by a display
frame. This can be done by applying the Algol68 operator AREA to the
display frame and examining the bounds of the resulting boolean
array, but alternatively there is an Algol68 operator VISIBLERECT,
kept in Pic-operatorModei. operating on a display frame.
delivering as a RECT, "t part of the picture which has to be
displayed.

There is also an operator SIZE, kept in icperator dule, which
operates on a display frame, delivering the size of the rectangle that
the picture occupies on the document.

18

document

tlFv

4 1 sizeOFv
picture

S......................

If the shaded area is the area of the picture to be displayed, s is the
vector delivered by SIZE, and is independent of the position of the
picture on the document and the area to be displayed; v is the
rectangle delivered by VISIBLERECT and is also independent of the
position of the picture on the document.

There are procedures defined for drawing arbitrary lines and filling
in rectangles. These procedures are defined in lpicdrawm ,Modu-e.

There are three procedures for drawing lines, drawhoriz, draw..vert
and picdraw_line. All three of these procedures take a pattern
parameter which consists of a row of booleans. As the line is drawn,
the boolean pattern is repeated. In the case of drawhoriz and
draw._vert the pattern is passed as a OBOOL; in the case of
picdraw_line the pattern is passed as a REF VECTOR[IBOOL. There
are some predefined patterns defined in [ine_stes ,Module. There
is another parameter common to all three procedures and that is an
integer set. set determines what is assigned to that part of the
boolean array where the line lies.

set Assignment to boolean array

0 The pattern.
1 The negation of the pattern.
2 The 'and' of the pattern and the boolean array.
3 The 'and' of the negated pattern and the bolean array.
k The 'or' of the pattern and the boolean array.
5 The 'or' of the negated pattern and the boolean array.
6 The 'xor' of the pattern and the boolean array.
7 The 'xor' of the negated pattern and the boolean array.

19

pic-draw. line is a
PROC(DISPLA YFRAME df,

COORO from, to,
REF VECTORUBOOL pattern,
INT set

)VOID

df is the display frame defining that part of the picture to be
displayed.

from and to are coordinates of the positions in the picture where the
line is to start and finish. COORD is the Algol68 mode

STRUCT(SHORT REAL x, ')

...

document

to

.................. -. e
picture

picdraw_ line does not attempt to draw outside of the shaded area
even though the call of the procedure requests it.

drawhoriz and drawvert draw horizontal and vertical lines, drawing
them more efficiently than the more general pJc_draw_line.

draw_ horiz is a
PROC(DISPLA YFRAME df,

IN T y_ place,
INT from, to,

IN T set,
t)BOOL pattern,
IIT origin

)VOID

df" is the display frame defining the boolean array in which the line is
to be drawn.

y-place is the y-position of the horizontal line.

20

from and to are the x-coordinates of the start and finish of the line.

origin is the place where the pattern starts. The line is only drawn
between from and to, but the pattern is measured from origin.

draw-vert is a procedure with an identical Algol68 mode, with the
switching of the x and y directions.

There is one procedure for filling in rectangles, this is called
fill frame. It has mode

PROC(DISPLA YFRAME di',
INT degree

)VOID

df is the display frame defining the boolean array which is to be
filled.

degree determines how the array is filled.

deree Assignment to boolean array

I FALSE (Clears the array).
2 The negation of the array.
3 TRUE (Blackens the array).

fill_frae fills the whole of rectangle specified by its display
frame parameter to whatever degree is specified. A smaller rectangle
can be filled by creating a new display frame referring to a smaller
area and apllying fillframe to that. There is an Algol68 operator
RESTRICT, kept in 1pic-operator oue, which operates on a
display frame and a rectangle, delivering a new display frame which
is the old display frame restricted to the rectangle.

21

?A

t)OFr picture

size Or.I.
- i6

OF
.

-

If df is a display frame specifying the displaying of the picture in
the lightly shaded region, then di" RESTRICT r is a new display
frame specifying the area that is more darkly shaded.

§ 8.1.3 The displayer of polynomial fit

The displayer of polynomial fit is divided into two sections; the
first section displays crosses where the points lie, and the second
section plots the curve.

MODE PICVAL - REF VECTOR[]VECI

PROC displayer - (DISPLAYFRAME df, INT mag, PICVAL pv)VOID,
(REF VECTOR[IBOOL solid-styles[11 a (style of line to be drawn)

FORALL pv-i IN pv DO (forall points)
drawvert(dfxOFpvJ.yOFpv_i-.yOFpv_i.,,solid,8);
draw horiz(dfyOFpvji.xOFpvJ-,xOFpvi , 8, solid,8)

OD;

IF UPB pv> I THEN-Praw curve! Fl (plot curve)
)

The crosses are composed from solid horizontal and vertical lines of
length 9, Intersecting at the point to be marked. If there is more than
one point, then the curve Is plotted.

22

The curve plotting procedure:-

INT order=UPB pv;
REF [,]REAL eqns=HEAP [1 :order, I :order. I]REAL;

find fit and store coeffs in eqns[,order- IT;
L JIREAL coef = eqnsL ,order. 1Y] ;

PROC f = (REAL x)REAL : (define function)
(REAL s = coeff[order] ;

FOR i FROM order-I BY -I TO I 0 s: = s-x~coeff[i1 00;
S

PROC plotixjnt= (INT low, high)VOID:

(draw line from low._x to-highyx.)I j

RECT r = VISIBLERECT df;
INT left = xOFtIOFr,

right = .leftLxOFsizeOFr- I;

(find first point in visible area)
INT start := 8;
FOR i TO order

WHILE xOFpv[il<left OREL(starts =i;FALSE)
DO SKIP D;

IF start= I THEN plot-x-int(B,xOFpv[i)FI; (draw first line)
IF start/=8 THEN

(draw lines between points whilst inside visible area)
FOR i FROM (start MAX 2) TO order WHILE

INT last - xOFpvi-13;
plot_x_int(last,xOFpv[i]);
k=right

DO SKIP 00
FI;
IF xOFpv[orderI<right THEN
plot.xjnt(xOFpv[order],xOF SIZE df) (draw last linel

FI

The coefficients of the polynomial that fits the points in the data of
the picture are calculated and stored in coeff. The function r is the
polynomial.

plotx_nt draws the curve representing f between the two x points
supplied as a parameters. It only displays the curve where it lies in
the area specified by the display frame df'. The curve is drawn as a
series of straight line approximations using picdraw-line, the x
displacement of each line being 16 and the first line starts at the x

23

position low. If the same part of the curve is drawn twice, an.l the
starting point for the second drawing does not coincide with the end
of a straight line in the first drawing, then the straight line
approximations of the two curve drawings will not coincide. For this
reason plot-xcint is only called on the intervals between the points
of the data of the picture; that is it can be cal~ed on the interval
between any two points, but not on any sub-interval

It is possible to draw the curve by the calls of plot x int on the
entire interval (0, x OF SIZE df); however it is only necessary to
call the procedure on those inter-point intervals which lie in the
area specified by the display frame.

An example display: -

/'

/

9 8. l.4 Sideways displaying

Sometimes it is necessary to display pictures that have been rotated
through 98 degrees, for example displaying documents in a landscape
manner on a laser printer. It is much more efficient to write the
pixels to the boolean array as they are to be displayed, rather than to
write them as portrait and rotate them afterwards.

The information on whether to display a picture sideways lies with
the boolean array to which the visual image is assigned. If the upper
bound of the second dimension of the boolean array is negative, then

24

the picture must be displayed sideways. The procedures defined in
the implementation, such as picdraw_line, will draw their iniaciws
sideways if this is specified by the boolean array in the displa\
frame.

If users are writing directly to the boolean array where the picture
is to be displayed, then they will have to take account of the
rotation. A point that normally addressed by [ts,xl, is now addressed
by [x, -y).

....................

§ 8.2 The editor

The Algol68 mode of the editor of a picture is
PROC(PIC TUREFRAME, INT, PIC VAL)EDITRES

where
EDITRES z STRUCT(BOOL altered, INT reason, PICVAL picval)

This operation is called by the Flex operating system and may be
called for one of several reasons.

The editor operates on three values. the PICTUREFRAME is the
context of the picture on the document, the INT Is the reason for
calling the editor and the PlCVAL is the data of the picture being
edited. The editor delivers three values, a BOOL which is TRUE if
the data of the picture has altered, an INT. which is the reason why
the editor was left and a PlCVAL which is the new data of the edited
picture.

§ 8.2. 1 Reasons for entering or leaving the editor

The editor of a picture is usually called by the Flex editor when it is
editing a document which contains the picture.

25

The editor of the picture can be called for many reasons. The most
usual reason is that the cursor has been placed on the picture
because the user wishes to change the data of the picture. The
picture editor is also called if the editor of the document, on which
the picture lies, is searching for a string of characters. The picture
editor would be expected to determine whether or not it contained
such a string; if it contained a string, it should place the cursor on
the string and wait for a request for action from the keyboard;
otherwise it should exit.

When the editor of a picture is called, there is an integer passed to
it as a parameter. This integer is a coding of the reason for the
calling of the editor. The set of integers and corresponding Algol68
names used for coding are kept in lpic_reasons_ .Module.

§ 8.2.1. 1 Requests for actions and their implementation

The actions of ah editor are normally determined in one of two ways.
Firstly, the reason supplied to the editor on its calling may entirely
determine what it has to do; for example if the reason was
fird_ string and the picture did not contain the string being searched
for, the editor is exited. Secondly, the editor responds to the
reading of the keyboard and the puck.

The reading of the keyboard is done via a procedure delivering an
integer which is a coding of the key/puck button pressed. Since most
readings of the key/puck require some form of action by the editor,
the integer delivered can be considered as a coding of the action to
be performed by the editor.

It is not possible for the editor of a picture to perform all the
actions that may be required of it. Suppose the picture was the
second element in a horizontal composition of graphical blocks and
the first element was a line of text. If the required action of typing
the key 'c' was to put the character 'c' immediately in front of the
picture, i.e append the character to the line of text, (as happens
when editing a cartouche). the picture editor could not do this since
it has control of the picture but not anything outside of it. The
editor of the document, which calls the editor of the picture, could
place the character 'c' in front of the picture. In order that the
document editor can do this, the picture editor has to be left and the
action required of the document editor commur.icated. The action
required of the document editor is passed as its integer coding as
part of the result of the call of the picture editor.

In addition to the actions resulting from direct interpretations of the
keyboard/puck, it is possible for the editor of the picture to request

26

other actions of the document editor by delivering other action
codings.

§ 8.2.1.2 The integer coding of reasons of entering the editor

The module pic-reasons_ :Module' keeps integer codings of actions

and reasonsthe names given are intended to suggest the actions the\
cause when passed to and from the document editor. These codings
appear in italics.

fird. next_ mark

The Flex editor is searching for the next mark in a document and has
found a picture. If the data of the picture includes the ahilit\ to
mark parts of the picture then the cursor should be placed where the
mark is, writing the message associated with the mark on the displa\
line and then normal editing should continue. If the picture does not
contain any such marks then the picture editor should be left with the
action fird_next_ mark, thereby informing the Flex editor to continue
searching for a rhark in the remainder of the document.

finl_ string

The Flex editor is searching for a string in a document and has found
a picture. If the picture has such a string then the cursor should be
placed on the string and normal editing continued. If the picture does
not contain such a string then the picture editor should be left with
the action finvi_string, thereby informing the Flex editor to continue
searching for the string.

go-. in
The Flex editor is trying to determine the graphical block nearest to
the top left of the cursor. It has found the picture. After the select
button of the puck is released, the top left of the cursor is set to

the position of the puck.

move, down, move, left, move, right, move, up & southwest

The editor is moving from one graphical block on a document to
another in the direction of the reason and the graphical block it has
found is the picture.

§ 8.2.1.3 The integer coding of the puck/keyboard

The reading of the keyboard/puck delivers an integer coding as
specified in the following list:-

If the key for a character is pressed, then its code is delivered and
is in the range 32 ... 127. If CNTRL is pressed in conjunction with a
character key, then 128 is added to the code.

27
I

Key Reason CNTRL Kes

SET UP find_ string 6
HELP help 135
T move_ up 28
4 move- down 29

move- left 3e
- move, right 31
OOPS southwest 149
ACC/ESC double_ edit 155
BACK SPACE backspace 136
BREAK 128 129
TAB find_nextmark 137
REJ/DEL 127 BREAK IN
NO SCROL change, mode V#
LINEFEED ie quit
PF delete_ char delete_ char
PF2 duplicate duplicate
PF3 ;plit_ page split_- page
PF4 delete delete
ENTER evaluate evaluate
KEYPAD . ins_ blank_ below ins_ blanA_ below
KEYPAD 6 container container
KEYPAD 1 cart_ tomode cart to_mode
KEYPAD 2 line_ to_ para line- to- pata
KEYPAD 3 tid._para tid3 %para
KEYPAD 4 split. horiz split- hori?
KEYPAD 5 undo_ cartouche undo_ cartouche
KEYPAD 6 group group
KEYPAD , insert- del- horiz insert- del- hori
KEYPAD 7 insertdel vert insert_ del_ vert
KEYPAD 8 prey page prey_ page
KEYPAD 9 next_ page next- page
KEYPAD - ins_ blank_ above ins_ blank_ abov e
PUCK select track track
PUCK examine examine examine
PUCK result result result

$ 8.2.1.4 The integer coding of actions resulting from an edit

When a the editor of a picture is exited, the reason field of the
result of the edit determines the action taken by the editor of the
document.

If a number in the range 32 ... 127 is delivered, then the character
corresponding to that code is inserted in front of the picture and the
picture editor is re-entered with reason go_in.

28

If 225 is delivered, then the 'Control a' displa appears, operating
on the picture.

If the CNTRL codes for the letters a ... z, A. C..S. U..Z are
delivered, then if these keys are set, their respective action %ill be
applied to the picture, otherwise there will be a beep and the picture
editor will be re-entered with reason goin.

If the code for CNTRL B is delivered the editor will move to the
bottom of the document.

If the code for CNTRL T is delivered the editor will move to the
top of the document.

back space

If there is a character immediately before the picture, it is deleted,
the picture editor is re-entered with a reason of goin.

come- back
The Flex editor determines the graphical block nearest to the top
left of the cursor and calls its editor with a reason of go-in.

container
The cursor will be placed on the graphical block containing the
picture.

delete
The picture is put on the list of remembered elements.

double- edit
The window containing the picture will be split and the picture editor
re-entered with reason of go_-in.

duplicate
The picture will be placed on the list of remembered elements. If
there is a following graphical block in the document, the cursor will
be placed on it, otherwise there will be a beep and the picture editor
is re-entered with a reason of goin.

evaluate
The line containing the picture is evaluated by curt.

find _ next_ mark
The Flex editor searches for the next mark in the remainder of
document after the picture.

find- strin
The Flex editor will search through the remainder of the document

29

after the picture, for the string of characters set up with the
FINDLINE key.

grou.

This causes the picture to be grouped in the same manner as if it
were a cartouche.

ins blank, above & ins blank below
This causes a blank line to be inserted either above or below the
picture.

ins- del- vert

This causes the top of the list of remembered elements to be
inserted above the line containing the picture.

line_ to- para
This causes the line containing the picture to be turned into a
picture.

move left. move-right, move-down, moveup & southwest
This causes the cursor to be placed on the graphical block in the
corresponding direction.

nex_ page & prev.page
If the picture lies in a paged structure, there is a passage through
the pages in the forward and backward directions respectively.

quit
This causes the editor to quit from the edit of the document

result

This causes the editor to result from the edit of the document.

split_ pae

This causes the page to be split immediately above the line containing
the picture.

tidy.. para

If the picture is in a paragraph, the paragraph will be tidied.

track

The puck is tracked and when the select button is released the top
left of the cursor is set to the puck position and the editor of the
graphical block nearest the puck is entered with a reason of go-in.

38

All other actions cause a beep and a re-entry of the editor with a

reason of go_ n.

§ 8.2.2 Altering the data of the picture

The editor of a picture class essentially operates on the data of a
picture together with its visual image, delivering another element of
the data class of the picture together with its visual image. The
visual image is usually displayed when the picture editor is called
and must be kept consistent as the data of the picture is altered. In
addition to the data, the editor delivers a boolean which informs the
editor of the document whether or not any change to the data of the
picture is to be recorded should the document containing the picture
be put to disc. If, on every edit of a picture, the editor delivers a
boolean signifying no alteration, then when the document is put to
disc the picture shall return to the form that it had when it was taken
from disc; otherwise, when the document is put to disc, the picture
shall have the data of the result of the last edit. If the picture had
never been stored on disc the picture resulting from the last edit is
stored.

§ 8.2.3 Movement, expansion and the PictureFrame

Whilst editing a picture it may be necessary to move the document on
which the picture lies behind the window through which it is see.
This happens when not all of the picture can be seen through the
window and the document has to be moved to include other parts of
the picture.

window frame on screen

cursor-

document

31

document movement window frame on screen

picture

-.._i--cursor movement

The movement of the document behind the window brings into view
parts of the document both inside and outside of the picture.
Although the picture editor can determine how to display that part of
the document inciuded in the picture, because it has the data of the
picture as an operand, it requires information on how to display the
area outside of the picture. This and other information is passed
through to the picture editor via an operand with an Algol68 mode
PICTUREFRAME, kept in the module Ipicoperator tModule. This can
be thought of as an abstract data type with its operati6nis, such as
delivering how to display the cutside of a picture, provided b\
Algo168 procedures and operations.

There is a procedure pic sc.roll, kept in ipic-scroll m :Module, which
moves a document behind the window whilst editing a piic'e. The
ability to display both the picture and its surroundinc. is required by
this procedure making the procedure take three parameters: a
PlCTUREFRAME, which gives the ability to display areas outside of
the picture; a PROC(RECT)VOID, this is the displayer for displaying
an arbitrary rectangle of the picture. and a VECI which is the vector
giving the change in the position of the document behind the window.

It is often possible to create the PROC(RECT)VOID from the
displayer of the picture thus

I(RECT r)VOID displayer (DISPFRAME pf RESTRICT r,picval, I)

DISPFRAME is an operator, kept in ic-oper-itor :Module, for
converting a picture frame into a display trame. when a picture is
being edited, there is a part of the screen to which it assigns for
displaying its visual image. The display frame for this boolean array
Is obtained by applying DISPFRAME to the picture frame of the edit.
It is important to realise that the display frame does not remain

32

constant throughout the edit, but changes as the picture changes and
moves on the screen.

The procedure for displaying an arbitrary part of the picture on the
screen obtains the display frame from the picture frame, pf. passed
to the picture editor, restricts the display frame so that it only
includes the rectangle r, and with this display frame, displays the
current value of the data of the picture. picva). with a magnification
of 1, which is the magnification of the screen.

Whilst editing a picture a change of its data may result in a change in
its size. The top left point of the picture is fixed relative to the
document, so that any change of size will result in an expansion or
contraction either to the right or to the bottom. This change to a
picture may affect the position of other objects on the document,
they may have to move to allow room for the picture to expand.

.............
documnent

picture-

.'...xpansion of picture

... 2-< 4other items
on document

If the document in this diagram is of fixed size, then the expansion
shown cannot take place since this would require the movement of the
item below the picture so that part of it would lie outside of the
document; this is not allowed. If the document is flexible in the y
direction then the document could expand to allow the Item below the
picture to be moved downwards to allow for the increase in size of
the picture. Whether or not the document is flexible in the x
direction, there is room for the expansion of the picture in the x
direction.

The ability to expand a picture depends on the cotitext of the picture
and the context of a picture Is held In the picture frame. To expand
or contract it is necessary to apply the Algol68 operator EXPAND,
kept in Pic_operator gModule to the picture frame of the picture.
EXPAND operates on a (ICTUREFRAME and a VECI, the VECI being the

33

amount of expansion. EXPAND delivers a boolean which is TRUE if
the expansion is allowed and FALSE if it is not. Expansions are
effected bN expanding with a positive amount and contractions bN
expanding with a negative amount. If there is an expansion in one
direction there must not be a contraction in the other.

When EXPAND is called, it may have to change the location of other
objects on the document to accommodate the change of the picture.
When expanding, if there is room for the expansion, EXPAND clears
part of the document to give space for the expansion of the picture.
When contracting, the editor of the picture must clear that part of
the picture from which it is contracting before calling EXPAND,
thereby leaving space for the other objects on the document to move
into during the call of EXPAND. A call of EXPAND with a contraction
is always allowed.

§ B.2.4 Reading the keyboard and the puck

The state of the puck can be read at any time during an edit and is
read by the procedure readpuck, kept in read..puckm Module.
read_puck has mode PROC(PICTUREFRAME)PUCKRE where PUZKRElS
is a STRUCT(VECI posn, BITS buttons). The parameter is the picture
frame of the edit; posn is the position of the puck relative to the top
left of the picture and buttons are the buttons that are held down on
the puck. When the select button is depressed, the least significant
bit is set; when the examine button is depressed, the second bit is
set and when the result button is depressed, the third bit is set.

There is a procedure innerread, kept in linner_readm -Module,
which performs two functions. It moves the document so that it
includes the cursor and displays the cursort it then waits until a key
is pressed, either on the keyboard or on the puck. When the key is
pressed the integer coding for that key is delivered. Since
innerread can cause a movement of the document behind the window,
it will require the ability to display arbitrary parts of the document.
The picture frame provides the ability to display all that is outside
the picture and a PROC(RECT)VOID, displaying an arbitrary rectangle
in the picture, is also required. The mode of inner-read is

PROC(PICTUREFRAME, PROC(RECT)VOID)INT
The cursor is removed from the document when innerread is exited.

There is another procedure read. kept in ireadm Modu e, which is
almost identical to read except that it waits for the examine and
result buttons on the puck to be released before delivering their
integer coding, instead of delivering the coding the moment when
they are pressed.

30+

9 8.2.5 Control of the cursor

The cursor is a rectangle within the picture and is displa~ed in the
call of either of the two procedures inner_read or read.

The current location of the cursor can be read using the procedure
give- cursor-.rect, kept in !ursorcontr ,Module . give- cursor_ rect
requires the picture frame as parameter and de lvers the rectangle of
the cursor relative to the top left of the picture.

To set the location of the cursor, there is a procedure

set_ cursor_ rect, also kept in o onrModule,, which requires
a picture frame and the rectangle to which the cursor is to be set : it
sets the cursor to that rectangle.

§ 8.2.6 Following the puck

An important part of the editor is the handling of the action track.
track is delivered by a call of inner_read or read when the select
button is pressed. The normal conventions of the editor are that the
puck is followed whilst the select button is pressed and when it is
released the cursor is placed on the nearest element to the puck.
This may involve scrolling the document behind the window.

The simplest method of achieving this is to deliver from the picture
editor the reason track. The tracking is taken care of by the
procedure calling the picture editor which is usually the editor of
the document. The calling procedure can then scroll the screen if
necessary and when the select button of the puck is released the
calling procedure can set the top left of the cursor to the position
of the puck and return with a reason of go-in. In the calling editor
the puck is tracked and, when the puck is released, the editor of the
graphical block nearest to the puck is called with a reason of go-in.
This is not necessarily the editor of the picture which was exited to
start the tracking of the puck.

6 8.2.7 The polynomial fit example

The editor of polynomial fit provides only three operations. It
accepts new points, deletes existing points and moves existing
points. There is always a preferred point (unless there are 8 points)
and this is initially the point nearest to the puck (the point whose x
displacement is closest to the x displacement of the puck) when the
select button is released. The preferred point iE marked by a cursor
of size (18,18). When the editor moves or deletes a point, it is the
preferred point that is moved or deleted. When a point is moved, it
is moved to the current position of the puck and remains the
preferred point. When a new point is inserted, it is inserted at the
current puck position and it becomes the preferred point.

35

preferred point cursor

*puck

36

The editor of polynomial fit:-

PROC editor - (PICTUREFRAME pf, INT reason, PICVAL pv)EDITRES:
IF reason=find-string OREL reason-findnextmark THEN
(FALSEreason,pv)

ELSE
REF VECTOR[]VECI npv := pv;
BOOL altered:=FALSE;
INT action, preferred-point;

PROC find-preferred-point = VOID: Ifindpreferredpoint;

PROC add-point = (VECI point)VOID ..add-point,;

PROC remove-point = (INT place)VOID: iremove..point;

PROC loc__disp=(RECT r)VOID:
displayer(DISPFRAME pf RESTRICT r, 1 ,npv);

PROC redisplay = VOID:
(RECT pr = VISIBLERECT pr';
pf CLEAR pr; locdisp(pr)

findpreferredpoint;

WHILE
action: =innerread(pf, loc.disp);

IF action = ins_del_vert THEN
add.-point(posnOFread_puck[pf) ;

redisplay ;TRUE
ELIF action = delete THEN

IF UPB npv<ITHEN warning("No points to delete)

ELSE
remove-point(preferred-point);

findpreferred-point;
redisplay

Fi;
TRUE

ELIF action - ABS "m: THEN
IF UPB npv<ITHEN warning("No point to move")

ELSE
remove-point(preferredpoint);
add_point (posnOFread-puck(pf));
redisplay

Fi;
TRUE

ELSE
FALSE

FI

DO SKIP OD;
(altered, action,npv)

FI

The picture does not contain any strings or marks so that if the

37

editor is entered looking for either of these it is left immediatel]
with the same reason, thereby informing the calling procedure to
continue looking. The data structure has not been altered so it is
returned together with a boolean value false.

Any other reason of entry to the editor causes entry into its main
loop. Once in the main loop, the editor reads the puck/keyboard to
determine what action the user wishes. If the action is one of the
three that the editor can perform, it completes the action and goes
around the loop again. All other actions are communicated to the
calling procedure by exiting with the action as a result. As a result
of obeying actions the data of the picture changes and the current
value of the data is stored in nlk, the recording of an alteration is
stored in altered. The preferred point can also change as a result of'
actions and is stored as an index into the vector of points ini the
variable pre ferred_ point.

There are five sub procedures of the editor :-
1. find preferredLpoint reads the top left of the current cursor

position and-assigns to preferred.point the index of the point
nearest to it. It also moves the cursor to the preferred point and
sets its size to (10,18). If there are no points in the data
structure, then the cursor's size is set to (0,e) which makes it
invisible. If the editor is entered by releasing the puck then the
top left of the cursor holds the current position of the puck and
consequently findtpreferred point finds the nearest point to the
puck.

38

PROC find.preferred-point - VOID:
IF UPB npv = 8 THEN set_cursor_rect(pf,((8,8),(8,8)))
ELSE

INT x = xOFtlOFgive__cursor_rect (pf) - (x-coordinate of cursor)

(find lowest point larger than cursor)
INT place:=UPB npv;
FOR i TO UPB npv WHILE xOFnpv~i]<x OREL(place:=i;FALSE)DO

SKIP
OD;

(If cursor is nearer lower one then decrement place)
IF place>IANDTH (xOFnpv[place)-x)>(x-xOFnpv[place- 1])THENI

place-: = I
FI;

(set the cursor to the place)
set_cursorrect(pf, (npv [place], (18, 10))

(make place the preferred point)
preferred-point := place

FI

2. add-point adds a new point into the data structure. When adding a
new point it is important to preserve the property that all the
points in the vector of points are ordered according to their
x-coordinate. Whenever a new point is added, it becomes the
preferred point so that the mrsor is set to this point and its
index in the vector is assigned to preferredpoint. It records the
alteration to the data structure by setting altered to TRUE.

39

PROC add..point -(VECI point)VOID:
(VECI size -SIZE pf i

(make the point lie in the picture)
VECI pt=((xOFpoint MIN xOFsize) MAX E8,

(yOFpoint MIN yOFsize) MAX (3);

(make new vector 1 larger than old)
INT place: =UPB npv+ I;
HEAP VECTOR(place] VECI temp.,
altered .- TRUE. (record alteration)

(find place to insert new point)
FOR i TO UPB npv
WHILE xOFpt>xOF npvfi] OREL (place:-i, FALSE)
DO
SiIP

00;

(insert new point)

tempE :place-1) :- npv[:place-1);
temp[place I : ptfI
temprplace 1: 1 : fpvtplace: I
npv:=temp;

(set the cursor to new preferred point)

preferred-point s- place
(make the new point the preferred point)

3. remove-.point takes an integer parameter, which is the index of
the point in the vector; removes the point from the vector of
points and records the change in the data structure bN setting
altered to TRUE.

)PROC removejioint *(lNT place)vUBo1D
(HEAP VECTOR[UPB npv-aeVECI temp;

altered = TRUE;
temp[:place-1 :- npve :place-1
temptplace:) s:znpv~place.1:);
npv -temp

It. locdisp is the local displayer to be used as a parameter to
inertnread. It must display any specified rectangle of the
picture. The displayer of the picture displays arbitrape parts of

se , e

the picture and its parameters are a display frame, an integer and
the data of the picture to be displayed. The data of the picture is
the value stored in npv, the integer is the magnification which,
since the display is on the screen, is 1.The display frame is
obtained from the picture frame and the rectangle parameter.

PROC loc-disp=(RECT r)VOID:
displayer(DISPFRAME pf RESTRICT r, l,npv);

S. redspav redisplays the picture. It does this by determining the
rectangle of the picture actually on the screen, using the
operator VISIBLERECT of mode (PICTUREFRAME)RECT. It then
clears this area using the operator CLEAR of mode
OP(PICTUREFRAME,RECT) VOID and displays the picture in this
area using locdisp.

PROC redisplay = VOID:
(RECT pr = VISIBLERECT pf;
pf CLEAR pr; locdisp(pr)

The editor uses these procedures in an obvious manner to implement
the actions of the picture editor. There are tests to ensure that
attempts to delete and move when there are no preferred points fail.

§ 8.3 Transferring pictures to other machines

The procedures defining the operations of a picture exist on a
filestore of a machine. If a picture is to be transferred to another
machine, then it has to access the defining procedures of the
operations. Use of the procedures on the machine from which the
picture was transferred is unsatisfactory because it would require
communication between the two machines. At best, this would be
slow, since the displaying of a picture on a screen requires the
passage of much information; at worst, there may not be a link
between the two machines. To transfer a picture from one machine to
another, the procedures defining the operations of a picture must
exist on both machines. The transference of a picture will therefore
involve the transference of the data of the picture plus a means of
identifying the defining procedures of the picture class on the
receiving machine. The identification of the picture is by means of a
name, which must consist of less than 26 characters.

'.1

§ 8.3.1 The naming of the operations of a PictureDefinition

The procedures defining the operations of a picture class are named
by naming, either permanently or temporarily the Picture Definition
by which they are defined.

When transferring a picture from one machine to another it is only
necessary for the procedures to be named on the receiving machine.

§ 8.3.2 The passing of values between machines

To pass a value from one machine to another requires it to be
expressed in terms of universal objects such as characters or
integers. In the Flex operating system there exist procedures to
express general graphical blocks in terms of these universal objects
and, in consequence, to transfer a picture between machines its data
must be coded as a sequence of characters, integers and graphical
blocks.

The characters, integers and graphical blocks are stored in three
flexible vectors and these vectors are passed between machines.
There are two operations required of a picture definition to transfer
its data from one machine to another: one to store the data in the
vectors, and one to remove the data from the vectors. These two
procedures are called -edout" and "ed_in" respectively. If these
operations are not present, then it will not be possible to pass
pictures from one machine to another.

§ 8.3.3 The edout

The Algol68 mode of the procedure defining the ed-out operation is
PROC(PROC(CHAR) VOID,

PROC(IW T) VOID,
PROC(GBL OCK) VOID,
PIC VAL

) VEC TOR[]CHAR

The three procedural parameters are the procedures to add values
onto the end of the vectors, the PlCVAL parameter is the data of the
picture. The VECTOR[]CHAR delivered is the name by which the
procedures defining the operations of the pictures on the target
machine can be identified.

• .. -- -- , ,, .= .nl =m I Il IIll l I III2

The example of the edout for the polynomial-fit is

PROC ed-out = (PROC(CHAR)VOID addc,
PROC(INT)VOID addi,
PROC(GBLOCK)VOID addgb,
PICVAL pv
)VECTOR()CHAR:

addi (UPB pv);
FORALL pv-i IN pv DO addi (xOFpvj) ;addi (yOFpv-i)OD;

polynomiaLfit

It only uses the integer vector and adds the upper bound of the vector
of VECI, followed by the x and y components of each of the VEC!.
Finally the name of the picture definition on the target machine is
delivered.

8.3.t The ed-in

The Algol68 mode of the procedure defining the ed-in operation is

PROC(PROC CHAR, PROC INT, PROC GBLOCK)PICVAL

The three procedural parameters are the procedures to remove values
from the vectors, the values are removed in the order in which they
were added; the PICVAL result is the data of the picture created
from the values in the three vectors.

The ed_in procedure for the polynomial fit is

PROC ed_in = (PROC CHAR nextc,
PROC INT nexti,
PROC GBLOCK nextgb

)PICVAL i

(PICVAL pv - HEAP VECTOR[nexti]VECI;
FORALL pvj1 IN pv DO pvi: - (nexti,nexti) OD;
pv

This procedure reads the upper bound of the vector of VECI from the
integer vector, using it to generate a vector of the correct size. It
then assigns to each element of the vector in turn the next two
elements from the integer vector.

§ 8.1+ Transferring pictures to and from disc

If a document containing a picture is to be put onto backing store.
then operations capable of placing the data of the picture on backing

1+3

store and retrieving the data of the picture from backing store have
to be defined.

It is possible to store and retrieve integers and characters on
backing store and the edout and ed-In operations of the picture
provide a coding and decoding of the data of a picture into characters
and integers. If the picture definition has no other operations
defined for storing and retrieving the data of the picture on backing
store, and it has edin and ed._out defined, when a picture is put
onto backing store it uses ed_in and when it is retrieved from
backing store it uses ed_out.

It may be that some pictures contain objects that cannot be coded into
integers and characters but can be stored on disc, in which case the
edout and ed_in procedures would not be suitable for coding the
data. To overcome this problem, it is possible to define two other
operations, va]_todisc and disc_to_va] for transferring the data of
a picture to and from backing store. The decision as to which
operations are used by the Flex operating system when a document
containing a picture is put onto backing store is as follows. If
valto_disc is defined then it is used, otherwise edout is used; if
neither of these is present, then the document cannot be stored on
backing store. If the data of a picture is stored using valto disc,
then it is retrieved using disc-to-val; if it is stored usinq edout,
it is retrieved using edin. If the necessary retrieval procedure is
not defined for the picture, then the picture can not be retrieved

from disc.

§ 8..1 The val todisc

The Algo168 mode of the procedure defining the va_todisc operation
is

PROC(PIC VAL)INT

Its parameter is the data of the picture and it delivers a disc
capability of its disc representation. In Algo168 the disc capabilities
are represented by values of mode INT.

In the case of the polynomial fit the procedure for transferring the
PICVAL to disc is simple. The PICVAL consists of a vector of pairs

of integers and pb_tod (kept in Ipbto-d ,Module-) accepts this as a
parameter and delivers a disc_capability of it.

JPROC valtodisc - (PICVAL pv)INTtpbtod(pv);

4t

§ 8.4.2 The disc-to-val

The AlgoI68 mode of the procedure defining the disc-to-val operation
is

PROC(IN T)PIC VAL

This takes the disc capability of the disc representation of data of
the picture and should deliver the data of the picture.

The disc-to-val of the polynomial fit picture is again simple,
requiring a call of from_ disc (kept in 1from-disc Module

PROC disc-toval - (INT d_ptr)PICVAL:from-disc(djptr,())

§ 8.5 Splitting pictures

If a document is being prepared for printing, it may be necessary to
split it into pages. There are procedures in the Flex operating
system to process a document into pages of some fixed length. The
boundaries between pages cannot be determined arbitrarily since they
may lie in unreasonable places, for example in the middle of a line of
characters.

Thic ic nnt nuiii nn ha hfnrnm nf ih-u n nvw

A line of characters cannot be split. This is not true of a vertical
composition of graphical blocks, which can be split at any boundary
between the graphical blocks from which it is formed. The decision
of where to split a graphical block is dependent on the type of
graphical block.

To determine where to split a picture there is an operation vsplit
defined by an Algol68 procedure with mode

PROC(PICVAL pv,VECI size,

INT ypt,
INT place,
PROC(PIC VAL, VECIINT)GBL OCK maker

)STRUCT(GBLOCK a,b)

pv is the data of the picture, size is the size of the picture and ypt
its ypt. place is the displacement from the top of the picture, where

the calling procedure would like the picture to be split, maker is a
procedure for making a graphical block of the picture from elements
of the data class of the picture (c.f. section "The making of a
picture from a picture definition-). The result of the procedure must
be two graphical blocks, the first of which has a height less than or

I5

equal to place. These two graphical blocks represent the splitting of
the picture and have the same width as the picture. If the picture
cannot be split, then the first block should be a graphical block of
size (B,width of picture) and the second the graphical block of the
entire picture.

If a v.split procedure is not included in a Picture Definition, then the
picture will not be split.

Following is the v-.split procedure for polynomial fit. This is
artificial as it would not normally make sense to view a graph in two
parts

MODE PICVAL = REF VECTOR[]VECI;
MODE VSRES = STRUCT(GBLOCK ab);

PROC v split = (PICVAL pv,
VECI size,
INT ypt,
INT place,
PROC(PICVAL, VECI,INT)GBLOCK maker
)VSRES:

maker(pv, (xOFsize,place),ypt),
(REF VECTOPR IVECI npv = HEAP VECTOR[UPB pv]VECI;

FORALL npv_i IN npv, pv-i IN pv DO
npv-i = (xOFpv i, yOFpv-i - place)

OD;

maker(npv, (xOFsize,yOFsize-place),8)

This procedure decides to split the picture at the point indicated b\
place. It does this by returning for the first graphical block the same
picture with a smaller vertical size; it can do this using the
procedure maker. The second graphical block is again the same
picture, only this time the y coordinates of all the points have been
decreased by place, as has the y coordinate of the size of the
picture. The second graphical block is created from a new vector
with these new points.

1+6

place

/ y-place

yOFsize-place

§ 8.6 Using pictures as input to compilers

Documents on Flex can be used as input to compilers. If such a
document contains a picture, then it may be necessary for the
compiler to interpret the picture. Compilers can not be expected to
interpret all possible pictures. At the time of creation the compiler
does not know all the pictures which it may have to interpret.

There is an operation, called maAe-gcomp- input which can be defined
as part of a Picture Definition, which provides an interpretation of
the picture for compilers. If this operation is not included in the
definition of a picture, the picture is ignored by the compiler.

Compilers also need to be able to indicate where on a document errors
occur. The Flex operating system does this by means of marks. Marks
cannot be stored on disc, so that when a document containing marks is
to be stored, the document is stored on disc as usual, but the marks
are collected together to form a data structure of Algoi68 mode
INDEX, kept in in ex.mo es_ ,Module' . When the document is
retrieved from disc te marks can be folded back onto the document.

§ 8.6. 1 Marks and indices

A mark is a vector of integers which specifN a location in a document.

47

When a compiler discovers an error in the text of a program, it has
to specify where it is and the message that it wishes the user of the
compiler to see. During a complete compilation it may find more than
one error and an index is the collection of all the marks together
with their error messages.

9 8.6.2 make acomp_input

maegconip_ input is an operation of a picture defined by a procedure
with Algol68 mode

PROC(PIC VAL)IMPUTRES

INPUTRES is the Algo168 mode

STRUCT(PROC UNION(RES, VOID) reader,

PROC REF VECTOR[)INT current
)

This procedure is applied to the data of the picture and delivers two
procedures reader and current. reader is responsible for providing
understandable units to the compiler and current is responsible for
marking the picture to enable the compiler to mark errors.

S8.6.2.1 The reader

The reader is a procedure of mode

PROC UNION(RES, VOID)

It is assumed that compilers read documents from start to finish
reading one unit of data at a time. The reader is a procedure which
when called provides the next unit of data understandable to the
compiler. If the VOID union is delivered then the reader has reached
the end of the picture. RES is the mode of the data acceptable to the
compiler.

RES is a UNION(DECLINE, GBLOCK)
and
DECLINE is a STRUCT(LINE line, FONT font, BITS mode, forbid)

DECLINE is essentially a line of text with some information about the
manner in which it was constructed, for example if a line was
superscripted this information would be passee in mode. RES is a
union of the line and a graphical block

B8

9 8.6.2.2 The current

The current is a procedure which when called delivers the mark of
the current position of the reader.

§ 8.6.3 The folding of indices

Indices are represented by the Algo168 mode INDEX where

INDEX - REF VECTOR (1 INDEXITEM,
INDEXITEM = STRUCT(INT place, INDEXTL ti),
INDEXTL UNIONI(LINE, INDEX)

This mode is a little different from the REF VECTOR (lINT of the
mark delivered by current of make- gcompinput. An INDEX is
essentially a set of marks with a message attached to each. In an
index, each mark is represented by a list of integers, place, instead
of the vector provided by make-gcomp-input and is terminated by a
message. This should be thought of as a many branch tree with the
leaves being the messages. There is generally one more integer in the
list than there was in the mark. This is because the unit delivered by
make_ gcomp- input can be a line and the index refers to a point within
that line.

To mark a picture, it is necessary to fold into the picture all the
marks specified by an index. This requires the specification of an
operator in the definition of the picture called fold_index which
takes the data of the picture and the index, delivering the data
corresponding to the marked picture.

The AlgolB8 mode of the procedure defining fold index is

PROC(PIC VAL,INDEX)PIC VAL

If a picture is to be marked, then it must have the ability to store
the marks as part of its data.

Marks are not stored on backing store. When a picture with marks is
put onto backing store, it is necessary to store the unmarked version
of the data of the picture, delivering an index to the marks in
addition to the disc capability of the coding of the unmarked data.
When the data of the picture is retrieved from backing store, the
marks can be added to the data using fold_ index. To store the data of
the picture separately from its marks requires the definition of an
operator in the picture definition called todisc, to do this.

"9

The Algo168 mode of the procedure defining to-disc is

PROC(PIC VAL)GBDRES
where GBDRES = STRUCT(INT disc, INDEX index)

disc is the disc capability of the coding of the data of the picture,
and index is the index of marks of the picture.

58

9 9 Internal graphical blocks

In the cases of vertical and horizontal composition of graphicnal
blocks, the operations of the composite block are expressed in ternis
of the internal blocks. For example the displayer of a horizontal
composition is dependent on the displayers of each of the component
blocks.

It is possible for pictures to be recursively defined in the same
manner, that is pictures can be composed from other graphical
blocks, and there is a means of using the operations of an internal
block from with an operation of the picture.

For each operation in the abstract structure of a graphical block
there is a procedure, available to the procedures defining the
picture operations, to apply the operation to the block. This section
describes how to apply these operations to the internal blocks.

9. 1 The internal displayer

The procedure for displaying internal graphical blocks is dispgb and
is kept in the module dispgb m ,Modue. It is a value of mode

PROC(DISPL A YFRA ME, IN T, GBL OCK,FON T, BITS) VOID

It is a value of similar mode to the displayer of the picture. FONT
and BITS are historical and unused by the procedure, GBLOCK is the
internal graphical block, INT is the magnification at which the block
is to be displayed, and DISPLA YFRAME is its display frame.

The display frame of graphical block is the structure holding
information on where to display the block. The display frame of an
internal block depends on the display frame of the picture and where
the internal block is within the picture.

To determine the display frame of the internal graphical block, there
is a procedure called inner_ 'rame kept in isplayfram ;Module'l of
mode PROC(DISPLA YFRAME,RECT)DISPL A YF A ME.

5I

t I

internal
graphical

picture block

size

In this example the display frame of the internal block is determined
by the display frame of the picture and the rectangle (tl,size).

9 9.2 The internal editor

The procedure for editing internal graphical blocks is edit-_gb and is
kept in the module piceditqb_-. :Module. It is a value of Algo168
mode

PROC(PIC TUREFRALME, INT, GBL OCK)GBEDJ TRES
where
GBEDITRES = STRUCT(BOOL altered, INT reason, GBLOCK ghlock)

It is the direct parallel of the editor of the picture only it. edits a
graphical block instead of the data of a picture.

The major problem of using the editor of an internal graphical block
is in the provision of the PICTUREFRAME parameter. The picture
frame of the picture holds information on the context, of the picture,
i.e. information on what is outside of the picture. The same must be
true of the picture frame of the internal block editor, and the
picture frame of the internal block can be calculated from the picture
frame of the picture plus information about the area between the
boundaries of the picture and the internal graphical block.

52

document

tI

----- internal

graphical
block

picture b

szize

The information that must be provided to create a pictureframe for
the internal block is where it is, provided by means of a rectangle
(MI, size), how to display the shaded area and what the picture should
do if the internal graphical block should request an expansion.
provided by means of two procedures.

§ 9.2.1 The display procedure in the creation of a PictureFrame

The display procedure required in the creation of a picture frame is
responsible for displaying the picture in the area outside of the
internal block.

As the internal block is edited, it may expand or contract and change
its form, making the area to be displayed different at different calls
of the displayer. Since the displayer does not have to display the
internal block, it does not need to know what changes are made to the
internal block, it only needs to know where the internal block is. This
is passed to the displayer as a parameter.

The AlgoIBS mode of the display procedure is
PROC(RECT rect, RECT internal)VOID

53

ti internal

tl o rect

The display procedure should display everything that is in rect but

not in internal.

§ 9.2.2 The expand procedure in the creation of a PictureFrame

The expand procedure has an Algo168 mode of

PROC(REC T internal, VECI amount)BOOL

internal is the rectangle occupied by the internal graphical block,
amount is the size of the expansion requested by that block and can
either be positive or negative depending on whether an expansion or
contraction is requested. The purpose of the procedure is firstly to
determine whether or not the requested expansion can be allowed and
secondly to make any changes to the picture that are necessary to
accommodate the expansion. The BOOL result is whether or not the
expansion is allowed. A contraction is always allowed.

If an expansion is allowed, it is a requirement of the expand
procedure that it clears an area for the internal block to expand into.
The clearing of this area may make it neccessary to increase the size
of the picture.

5"-

.,expansion of internal object

internal

.movement of objects in picture
t clear space

. . expansion of picture

If the picture has to expand it will have to expand using the operator
EXPAND as described in the section on the editor. If the picture can
accommodate the increase in size of the internal block it should clear
the space required by the internal block and deliver TRUE, otherwise
it should do nothing and deliver FALSE.

If the internal graphical block wishes to contract, it will have
already cleared the space from which it has contracted. The expander
should then move any objects it desires into the resulting space and
if this results in a decrease in size of the picture, it should call the
operator EXPAND to reduce its size.

There is a restriction on the expand procedure. A contraction of the
internal block cannot produce an expansion of the picture. This
restriction is forced because the internal block assumes that its
contraction will be allowed and an expansion of the picture might not

be allowed.

The procedure for creating the picture frame for the internal
graphical block is new frame kept in :oureduramo le'. Its
Algo168 mode is

PROC(RECT place,
PROC(RECT, VECI)BOOL expande-,
PROC(REC T, REC T)VOID displayer,
PICTUREFRA E pf

)PIC TUREFRAIAlE

place is the rectangle of the internal block, the expander is the

55

expand procedure, displayer is the display procedure and pf is the
picture frame of the picture. The picture frame of the internal block
is delivered.

9 9.2.3 Regular PictureFrames

In many cases, the required picture frame of an internal graphical
block takes one of three forms. To cater for these three common
cases there are three procedures to create the picture frames. All
the procedures require a displayer and this should be of the Algol68
mode PROC(DISPLA YFRAME)VOID and should consist of the displayer
of the picture with the data of the picture and the magnification
bound to it.

The problems of creating new picture frames rest solely with
expansion; if there were no expansion then there would be no
expander and the display procedure could be deduced from the
displayer of the picture. The three procedures to create picture
frames reflect three different methods of expansion and are kept in
the module lxand-_f ram :Module].

The first form of expansion is one that preserves horizontal lines.

x_ line

"4 picture

empty space
internal

graphical bock

If the internal graphical block expands in the y-direction, then
everything below it is moved in that direction -y the amount of the
expansion and the picture has to expand by the same amount. If there
is an expansion in the x-direction, then the internal block expands
freely until it gets to the x_line. The xk_line is the right most line of
the picture, not including the internal block: expansions of the
internal block beyond the x_line cause corresponding expansions in

56

the picture. The procedure to create this form of pictureframe is
*v..new_ framhe and is of mode

PROC(RECT internal,
PROC(DISPL A YFRAME) VOID displayer,
INT x_ line,
PICTUREFRAME pf

)PIC TUREFRAME

There is a procedure of identical mode for creating picturefranies
preserving vertical lines defined in a similar manner called
x- new_ frame.

The third form of expansion preserves horizontal and vertical lines.

4F~~.picture

internal
graphical empty space

i :block

.......................... _ line

xi line

The x_line and y'Iine must be beyond the internal graphical block and
there must be empty space between the block and these lines. The
internal block is allowed to,expand freely until it meets either the
xline or the yline, in which case everything beyond them is shifted
to the right or the left causing an expansion of the picture.

57

This is illustrated in the following diagram.

internal
graphical
block

............Yline

x line
The procedure to create such a picture frame is xy.newframe and is
of mode

PROC(RECT internal,
PROC(DISPLA YFRAME)VOID displayer,
INT x_ line, yline,
PICTUREFRAME pf

)PIC TUREFRAME

§ 9.3 Transferring pictures to other machines

To transfer an internal graphical block between machines involves
placing it in the three vectors of INT. CHAR and GBLOCK. Since an
internal graphical block is represented by a GBLOCK. it can be stored
in the GBLOCK vector.

§ 9.A Transferring pictures to and from disc

There is a procedure gboo_disc, kept in gb-to discma ,Module,
with AlgolB8 mode PROC(GBLOCK, VEI)GBO 5, where' UVE5 is 7 a
STRUCTINT disc, INDEX index). The VECI parameter is irrelevant.
The procedure takes a graphical block and delivers a disc capability
for its backing store coding and an index. For further details on the
index see the section on using pictures as input to compilers.

To retrieve a graphical block from disc, there is a procedure

58

discto_gb. (kept in 0isctogh-m :Module,) of mode
PROC(INT,FON T)DTGRES.
The INT parameter is the disc capability of the backing store coding
of the graphical block, and the FONT parameter is irrelevant.
DTGRES is a STRUCT(GBLOCK gb, VECI tlcursor); gb is the graphical
block retrieved from disc and ticursor can be ignored.

§ 9.5 Splitting pictures

To split graphical blocks internal to a picture, there is a procedure
vsplit, kept in Ivsplit :Module, of Algol68 mode

PROC(GBLOCK gb, INT place, FONT ft)STRUCT(GBLOCK a,b)

This procedure attempts to splits gb into two graphical blocks a and
b at the point place. ft is not used.

§ 9.6 Using pictures as input to compilers

To provide the compiler input of a graphical block there is a
procedure makeinput of mode PROC(GBLOCK)INPUTRES, kept in
picrnake-inp ..Modue, which delivers two procedures, one for
providing units understandable to the compiler and the other for
marking the internal block.

Similarly there is a procedure fold, kept in ITfold_m Modufe1, of mode
PROC(GBLOCK, INDEX, FONT)GBLOCK which folds the index parameter
into the internal block. The font parameter is unused.

To store a marked graphical block on disc, the procedure
gb-to.disc, as described in the section on transfer to and from disc,
is used. The index delivered as part of the result of gb-to-disc is an
index to the set of marks in the internal block.

59

9 10 A simple structure editor

To illustrate some of the more complex operations that can be applied
to pictures, the displayer and editor of a small structure editor will
be discussed in some detail.

The editor is intended to be one that manipulates the structure of a
simple program language. It is not intended to be realistic, but only
to illustrate the points about graphics being made.

The program language consists of sequences of statements, with a
statement being either an assignment or a conditional. A conditional
consists of three sequences. the condition, the sequence obeyed
when the condition is true and the sequence obeyed when the
condition is false.

This structure can be represented by the Algol68 mode SEQ where

SEO = REF VECTOR [)STATEMENT
STATEMENT - UNION(ITEF, ASGMT)
ITEF - STRUCT(SEO condition, t, f')
ASGMT - STRUCT(LINE Ihs, rhs)

The size of the graphical representation of any picture is important.
In the case of the structure editor this is determined entirely by the
data of the picture (cf. the polynomial fit which is not), and its size
is determined by the manner in which the data is displayed.

A value asgmt of mode ASGMT is displayed as the concatenation of the
three vectors of characters IhsOFasgmt, := ", and rhsOFasgmt, in

standard font. Every character in standard font is size (9,15), making
the size of asgmt

((UPB JhsOFasgmt * UPB rhsOFasgmt #4,),9, 15)

A value seq of mode SEO is displayed by displaying each of its
statements vertically above each other with a left justification. In
the case where there are no statements the vector of characters
"SKIP", in standard font is displayed. So the procedure for
determining the size of a seq is

IF UPB seq = 8 THEN (36,15)
EL SE

(maximum of x components of seq.sum of y components of seq)
FI

60

A value itef of mode ITEF is displayed as follows

IF conrdltion
OF

THEN t
OF
itef

ELSE f
OF

F1 itef

making its size
(the maximum of

(27 (size of "IF "4 * x-component OF conditionOFitef,
1+5 (size of "THEN ") x-component OF tOFitef,
45 {size of "ELSE ") 4 x-component OF fOFitef),

sum of y components of cordition,t and r'of itef+ 15 (size of *FI").

The sizes of the various structures can always be calculated using
the above algorithm, but to avoid recalculation of these sizes, they
are stored in the data structure, making the actual mode of the values
manipulated by the structure editor

GSEQ = STRUCT(VECI size, REF VECTOR [IGSTATEMENT seq)
GSTATEMENT S $TRUCT(VECI size, UNION(GITEF, GASGMT) stat)
GITEF = STRUCT(VECI size, GSEQ condition, t,)
GASGMT = STRUCT(VECI size, LINE Ihs, rhs)

§ i. I The displayer of GSEQ

The manner in which a value of mode GSEQ (a sequence) is to be
displayed is that each statement in the sequence will be displayed
one below the other with a left justification. If there are no
statements in the sequence then the word "SKIP" will be displayed. No
matter what the font of the document in which it is contained, the
font of a GSEO will be the standard font. Each character of the
standard font is 9 pixels wide and 15 pixels high. This makes the size
of -SKIP- 36 x 15.

When a displayer is called, it is not always required to display the
complete picture (e.g. in scrolling the screen where usually only a
small part of the picture needs to be displayed). For each part of the
picture, it is worth calculating whether or not that part of it is
required to be displayed. For example, displayseq, the displayer of
GSEO is written in terms of display'statement, the displayer of a
GSTATEMENT. It would be possible to write the displayer of GSEO by

61

calling display statement on each of the statements, even thougth
some of the statements maN not lie in the area to be displayed. This
relies on displa'v-statement being able to determine whether or not it
has to display the statement. If this attitude is adopted consistent]\
it is only procedures which actually write directly to the screen
(display-seq does not write to the screen, but calls other
procedures to do so) that have to decide whether or not they have ail
area to write to. In this case it takes almost as long to display a
small part of the sequence as it does to display it in its entirety.

For this reason, except for the displaying of "SKIP, if a statement
does not lie in the area to be displayed, display_ statement is not
called to display it.

The procedure for displaying GSEQ treats "SKIP" as a special case. In
the displaying of the sequence, it finds the first statement that
intersects the area of the picture which is to be displa\ed and
continues displaying until it is below that area, firstly checking that
the statement to be displayed is not entirely to the left of the area
to be displayed.:

62

PROC display-seq = (DISPLAYFRAME frame, INT mag, GSEQ seq)VOID:
RECT visible-rect = VISIBLERECT frame;
REF VECTOR (]GSTATEMENT seq = seqOFseq;

INT top = yOFtlOFvisible_rect,
bottom = top 4 yOFsizeOFvisible_rect,
left = xOFtlOFvisible_rect,
u = UPB seq.

IF u = 8 THEN (No Statements)
GBLOCK gb = flgb("SKIP", standard-ft); (make GBLOCK for "SKIP")
RECT skip-rect = (((,),(36,15));(rectangle occupied by 'SKIP")
dispqb(inner-frame(frame,skiprect),mag.gbstandard_ft, 16r6)

EL SE
INT start :08,place :=1
(place is the number of the current statement
start is the position of the top of the current statement)

WHILE
INT depth = start 4 y OF (size OF seq~place))
place < u AND depth <= top

DO
place . l; start depth

OD;
(find the first statement in the visible rectangle)

WHILE start <= bottom AND place <= u DO (Whilst in visible rect)
VECI size = size OF seq[place);
IF xOFsize > left THEN (statement is not entirely to left of area)
RECT stat_rect = (O(,start),size);

(rectangle occupied by statement)

display-stat (inner_frame (frame, statrect), mag, seq [place])
Fl;
start. :=N- OF (size OF seq[place])
place :=l

OD
FI

§ 18.2 The editor of GSEQ

The general manner in which editors on Flex operate is to read an
action code from the puck/keyboard: if the code is a value which the\
can act upon, they do so, otherwise they pass it back as an action
code to the calling editor. The action code continues to pass
outwards until it reaches an editor which can act upon it. This
editor, having taken the action, recalls the editors of internal
graphical blocks until it reaches the editor of a bottom level object.

63

This has the effect of making the structure of graphical objects
transparent to the user.

One of the purposes of the structure editor is to make the structure
visible. This is achieved by making the picture a bottom level object
and it does not immediately call any further editors. If it is desired
to move down the structure of the picture, then this is done
explicitly by pressing the examine key on the puck. Any other key will
cause the editor to be left with the action code set to the value of
the key pressed. The editors called by the picture editor can only be
left explicitly, by pressing the result button on the puck, and in this
manner they indicate the structure of the picture.

Some system procedures mark documents, this is to indicate places of
interest in the document such as a compilation error. These marks are
found using the tab key. If the editor is called with the reason of
find_ next_mark then it is looking for one of these marks. There is no
general procedure for putting marks into pictures, but if desired
they can be put .into the underlying data structure. This is not done in
the picture of GSEO so, when looking for marks, the editor is left
immediately. The editor is left with the action of find_next mark
informing the calling editor that it has to look for a mark in the
remainder of the document.

If the editor is entered with a reason of find_string it is searching
for a string of characters in the document. The string is not
available to the picture editor so it is left immediately without
altering anything. The action passed to the calling editor is
find_ string informing it to look for the string in the remainder of the
document.

If the editor is entered for any other reason, it puts the cursor on
the entire GSEO showing the outermost level of the structure, moves
the document to include the cursor in the window and reads the
puck/keyboard. This level of the editor only responds to one key,
examine, which causes this editor to edit the seq and then read the
keyboard/puck again. All other responses are passed backwards to the
calling editor for it to act upon.

There is no need to make a new picture frame to pass to the editor of
the sequence, since this has the same frame as the picture.

61t

MODE EEDITRES = STRUCT(BOOL alteredINT reason, GSEQ picval);

PROC editor = (PICTUREFRAME frame, INT reason,PICVAL gseq)EEDITRES-
IF reason = findnext_mark OR reason = find-string THEN

(FALSE, reason, gseq) (leave editor with no change)
EL SE
REF VECTOR [)GSTATEMENT seq = seqOFgseq;
REF VECTOR [)GSTATEMENT nseq :=

HEAP VECTOR[UPB seq]GSTATEMENT := seq;

(copy sequence)
ref displayseq := display-seq;
refeditLseq editseq;

(assignment for recursive calls)

BOOL altered := FALSE. (stores alteration to sequence)
INT action;
PROC display = (RECT r)VOID:

displayseq(DISPFRAME frame RESTRICT r,l,(SIZE frame,nseq)) ;
(local displayer)

WHILE setcursorrect(frame,((8,8), SIZE frame));
(put cursor on entire sequence)

action read(frame,display) ; (read keyboard)

IF action = examine THEN
(If action Is examine then edit sequence)
EDITRES er = editseq(frame, (SIZE frame,nseq));
nseq := seqOFseqOFer: (store result)
altered := altered OR alteredOFer; TRUE
(record alteration and repeat)

ELSE
FALSE (leave editor)

FI

DO SKIP OD;
(altered, action, (SIZE frame,nseq))

FI

9 l.2.l edit-seq

ediL seq is the editor of a sequence. It is designed to show the
structure of the picture and so, like its calling editor, will not go
deeper into the structure unless explicitly told to by pressing the
examine key on the puck. Similarly, the editor can only be left by
being told to explicitly, by pressing the result button on the puck.

The operations of editseq are quite simple. On entry the cursor is
placed on the first statement of the sequence, from where it has the
ability to move up and down through the sequence. Statements can be

65

inserted, deleted or edited and finally the editor can be left by
pressing result.

PROC editseq = (PICTUREFRAME frame, GSEQ gseq)EDITRES:
(REF VECTOR []GSTATEMENT nseq:=

HEAP VECTOR C UPB seqOFgseq I GSTATEMENT -= seqOFgseq;
(copy gseq)

INT u := UPB nseq; (number of statements)
INT statno = u MIN 1; (index of current statement in vector)
PROC max = INT:Fadile

(procedure delivering maximum width of statements not inciuding
the current statement)

INT pi := 8; (The top of the current statement)
BOOL altered -= FALSE; (records alterations)
INT action; (the most recent read of the puck/keyboard)

PROC display = (RECT r)VOID:
displayseq(DISPFRAME frame RESTRICT r, 1, (SIZE frame,nseq))
(local displayer)

setcursor_rect(frame,
((8, 8),(u=81(36, 15) 'sizeOFnseq[statno])));

(set cursor to cover the first statement)
WHILE

action := read(frame,display); (read puck/keyboard)
IF action=examine THEN Vdfile ;TRUE

ELIF action=result THENAL F (If action is result leave editor)
ELIF action=moveup THEN Edfile,;TRUE
ELIF action= ins_asgmt_abv ction=ins-itef_abv THEN

PTIe; TRUE
EL action=ins-itef-bel OREL action=ins-asgmtjel THEN
P ; TRUE

ELIF action=delete THEN Efile";TRUE

ELIF action=movedown THEN dfileTRUE
ELSE beep ;TRUE
Fl

DO SKIP OD;
(altered.action, (SIZE frame,nseq))

To illustrate the operations of edit-seq the effects of examine and

delete will be considered in some detail.

6 1.2.1.1 The effect of examine

When examine is pressed on the puck, if the sequence is not empty,

66

then the current statement is edited, the result of the edit is stored
and if there has been an alteration to the statement this is recorded
by setting altered to TRUE. Finally the cursor is put on the new
statement.

IF u = 8 THEN beep ELSE
PICTUPEFRAME new-picframe =

y_newframe (((8,pl), sizeOFnseq[statno)),
(DISPLAYFRAME df)VOID:

display.seq(df, 1, (SIZE frame,nseq)),
max,
frame

SEDITRES er = edit_statement(new..picjframe, nseq[statno)
nseq[statno] := statOFer;
altered := altered OR alteredOFer;
setcursorrect (frame, ((0, p1), SIZE new-pic-frame))

FI

9 10.2.1.2 The effect of delete

There are three cases to consider when deleting a statement from a
sequence. When there are no statements in the sequence delete
performs no action. When there is only one statement it is deleted
and replaced with -SKIP. When there is more than one statement it is
deleted. If the deleted statement was not the last in the sequence,
the new current statement is the one following the deleted statement,
otherwise it is the preceding one.

When a statement is deleted the sequence will have to contract. The
deletion of a statement can be viewed as the contraction of that
statement to size (8,8) or the size of -SKIP-, depending on whether
or not it is the only statement in the sequence. For this reason a
picture frame is made for t,,e current statement and this is
contracted. The rule of clearing the area from which the statement
contracts is obeyed and, if there are no statements left in the
sequence, "SKIP" is displayed.

The values recorded in statno, u and p1 are updated, the new value of
the data recorded in nseq and altered set to TRUE.

67

IF u - 0 THEN beep ELSE (If no statements then beep)
VECI crtsize=size OF nseq[statnoJ; (size of current statement)
PICTUREFRAME new.picframe = (picture frame of current stat)

y new-frame (((8,pl), crtsize),
(DISPLAYFRAME df)VOID:

display-seq(df, 1, (SIZE frame.nseq)).
max,
frame

fiIl_frame(DISPFRAME frame RESTRICT RECT((8, pl),crtsize), I)
(clear rectangle of current statement)

IF u= I THEN (special case as delivers "SKIP-)
new-pic_frame EXPAND VECI(36, 15)-crtsize;

(contract current statement by its size - size of 'SKIP I
nseq := seqOFempty-seq; statnos = 1; u =8;

(assign empty sequence to n-seq. set and u to 8)
setcursorrect(frame,((8,pl), (36,15)));

(put cursor on "SKIP")
altered :- TRUE; (record alteration)
display_seq (DISPFRAME frame, 1, (SIZE frame.nseq))

(display SKIP)
ELSE

newpic_frame EXPAND -crtsize;
(reduce statement size to (0.0))

REF VECTOR [IGSTATEMENT t = HEAP VECTOR [u - 1JGSTATEMENT;
t[l:statno - 1] := nseq[1:statno - l1

(make new vector of statements)
IF statno=u THEN

(If last statement then make current statement the one before)
pl -:= yOFsizeOFnseq[statno - := 1]

ELSE (make current statement the one after)
t[statno.u- 1] t= nseq[statno Lu]

FI;
nseq := t;u -:= 1; altered := TRUE;
(assign new sequence to nseq. reduce u by I and record
alteration)

set-cursor-rect(frame, ((B,pI), sizeOFnseq[statno))
(put the cursor on the new current statement)

FI
FI

68

§ I Declaring Flex Picture Procedures

There is a procedure called dec-picture-fns, for use with pictures,
which is kept in the common dictionary on Flex. Its curt mode is
Filed(Dictionary -> Void). It names and keeps further procedures for
use with pictures. They are kept in the dictionary supplied as a
parameter to the procedure and any PictureDefinitions created using
them will also reside in that dictionary.

newpicturedefn for making a new PictureDefinition.

amend..picture_.defn for changing a PictureDefinition

makepicturemaker which takes a PictureDefinition delivering a
Compiledpair keeping the procedure for
making pictures.

There are procedures for use in Control A whilst the cursor is on a
picture:

recover edfile which delivering the Edfile of the
PictureDefinition from which the picture was
created.

recover-picturedefn which delivering the PictureDefinition from
which the picture was created.

return_value which delivers the data structure of the
picture.

69

§ 12 Conclusion

The Flex implementation of documents described in this paper has
been used by various groups at RSRE. At present pictures are being
created to draw circuit diagrams corresponding to ELLA descriptions
of hardware [J. D. Morison, N. E. Peeling and T. L. Thorp, 1985) to
draw MASCOT diagrams [MASCOT Official Handbook, 1987) and to draw
Z specification schema.

In addition to these specific uses of pirurP:, there are more genera!
pictures to augment the Flex editor. These include pictures for
drawing graphs and pictures for drawing diagrams.

The uses that have already been made of pictures illustrate that
pictures can be used both to give a visual representation to already
existing data, as in the case of the ELLA circuit diagrams; and also
to enhance the general editing facilities of the existing editor.

There will be arn implementation of pictures, defined in terms of
TenlS [P. W. Core and J. M. Foster, 1986). Ten1s can express
procedure values, enabling a similar implementation to that on Flex.
Instead of relying on Algol68 types to express and determine the
structure of a graphical object, this will be done in terms of the
universal TentS types. To minimise the inconvenience to users who
wish to transport pictures from a Flex system to a Tents system, the
Ten15 types will be closely related to the Algol68 types.

78

Acknowledgment

This paper would not be complete without an acknowledgment of the
contribution made by Dr. J. M. Foster towards this work. He designed
and implemented the basic document and it was his conception to
allow users to extend this basic document by identifying the
structure of objects on documents.

71

N

References

P. W. Core and J. M. Foster
"TeniS: An Overview"
RSRE Memorandum No. 3977, September 1986.

I. F. Currie and J, M. Foster
"Curt: The Command Interpreter Language for Flex"

RSRE Memorandum No. 3522, September 1982.

1. F. Currie, J. M. Foster and P. W. Edwards
Kernei and System Procedures in Flex
RSRE Memorandum No. 3626, August 1983.

J. D. Morison, N. E. Peeling and T. L. Thorp
"The Design Rationale of ELLA, A Hardware Design and Description
Language"
Proc Computer Hardware Description Languages and their
Applications, pp 303 - 328, Tokyo Japan, 1985.

1. F. Currie, J. M. Foster and P. W. Edwards
"PerqFlex Firmware"
RSRE Report No. 85815, December 1985.

M. Stanley
"The Use of Values without Names in a Programming Support
Environment"
RSRE Memorandum No. 3981, November 1985.

M. Stanley
"Using True Procedure Values in a Programming Support Environment

RSRE Memorandum No 3916, February 1986.

'Official Handbook of MASCOT, version 3. 1"
JIMCOM, RSRE, 1987.

72

I'

Appendix

S\'stem Modules for use with Pictures

oord_and-re Module Keeps VECI and RECT the Algol68 mode for the
representation of aisplacement vectors and rectangles.

ursorcontr Modu e Keeps give cursor_ rect and setcursor rect
for reading and setting the cursor position.

iscto qb m zModulei Keeps disc-to_.qb and DTGPES for bringing
internal graphical blocks off disc.

isplayfrar :Module' Keeps inner-frame the procedure for making
internal display frames.

Pispgb m Mod-ue Keeps dispgb the procedure for displaying
internal graphical blocks.

Tfoldm :Modtu Keeps f'old the procedure for folding an index into an
internal graphical block.

Fbokimodes ..Module Keeps the mode GBLOCK, the mode of the
AlgolB representation of graphical blocks.

bto_disc_m -Module' Keeps gbtodisc and GBDRES, for putting
internal graphical blocks on disc.

-inerre dMulei i Keeps inner-read a procedure for reading the
puck/ke'boarcl.

line-styles :Module' Keeps solid, white, dot, dash, dashdot,
ongdash wh aricae the predefined line styles.

make-display .Module i Keeps makedisplay_ frame which is a

PROC(VECI size, INT mag)DISPLA YFRAME
which creates a REF[,JBOOL of size sizeemag for displaying graphical
blocks at a magnification of mag. then delivering a display frame for

the area.

Idisplaced_ :Modulej Keeps operators ., -, and DISPLACED for
operating on displacement vectors and rectangles.

cdraw_m odule' Keeps picdraw._line, drawhoriz, drawvert
and F11llFrame for drawing lines and filling in rectangles.

73

pic-edit-gb ..Module Keeps edit-gb the procedure for edting
internal graphical blocks.

Jpic-make_inp :Module, Keeps make-input and INPUTRES for making
compil(er input from internal graphical blocks.

pic-move-r :-Module' Keeps move which is a

PROC(PICTUREFRAME pf', RECT r, VECI amount)VOID

which, within the picture frame pf" moves the display in the rectangle
r by the displacement amount.

lpicnew-wind .ModuleI Keeps new-window which is a

PROC(PIC TUREFRAME pf,
RECT r,
GBLOCK gb,
INT reasot,
PROC(REC T) VOID local displayer

)WINRES

where WINRES = STRUCT(BOOL altered,
INT reason,
GBLOCK gblock,

VECI tL cursor,
)

Within the picture frame p1', a window is made r, in which is edited
9b with reason reason. The local displayer is the displayer of an
arbitrary rectangle within the picture frame. The resulting graphical
block is delivered, together with reason of leaving, whether it has
been altered and the cursor position when it was left.

Ipic-operator :Module I Keeps DISPLA YFRAME and PIC TUREFRAME and
the following operators.

SIZE operates on a display frame or a picture frame
delivering the size of the picture they are
framing.

AREA operates on a display frame or a picture frame,
delivering a REF [,BOOL which is the area that

the picture occupies.

RESTRICT operates on a displayframe and a rectangle,
restricting the area of the displayframe to the
rectangle.

7F+

DISPFRAME operates on a picture frame, deliverin(ttwt
display frame corresponding to the picture fraice.

CLEAR operates on a picture frame or a display frame
and a rectangle, clearing that area of the picture
specified by the rectangle.

EXPAND operates on a picture frame and a vector
displacement, requesting an expansion of the
picture frame and delivering a boolean result
depending on whether the expansion was allowed.

VISIBLERECT operates on a picture frame or a displa\ frame
and delivers that rectangle of the picture to
which it is possible to write(i.e. in the case of a
picture frame that part of the picture in the
window)

1pic-reasons_ :Module Keeps names for the reason and action codes.

picscrollm :Module, Keeps pic.scroll for scrolling the document
containing a picture behind the window.

lpicture-proc :Module: Keeps firrd-proc and firKvaJ for obtaining the
defining procedures of a picture and the data of a picture.

Ireadm Modi Keeps read a procedure for reading the

puck/keyboarde

Iread-puck-m :Module' Keeps read-puck and PUCKRES, for reading the
puck.

_ y_fram ;Module' Keeps y_ new_ frame, x_new_ frame and

xy_ new_ Irame for mal ing new picture frames.

75

OOCURENT CONTROL SHEET

Overall security classification of sheet Q T

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter

classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. URIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security

R87011 UNLIMITED
C la ss i

ficat on

5. Originator's Code (if 6. Originator (Corporate Author) bame and Location
k no n)

778400 RSRE, St Andrews Road, Malvern, Worcs. WR14 3PS

5a. Sonsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location

LoOe tIT Known)

7. Title

USER-EXTENSIBLE GRAPHICS USING ABSTRACT STRUCTURE

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference napers) Title. place and date of conference

B. Author 1 Surname. initials g(a) Author 2 9(b) Authors 3,4... 10. Date 00. ref.

CORE, P.W. 1987.08 75

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Descriptors (or keywords)

continue on separate piece of Daper

Abbtract

A means of creating an editor which allows its users to extend the classes

of objects manipulated by it is described. This has been achieved by

creating an abstract structure representing object classes. An example of

such an editor has been implemented on Perq Flex making use of true

procedure values.

$8o/ e

ATE

Al,

